Neuronal rebound spiking, resonance frequency and theta cycle skipping may contribute to grid cell firing in medial entorhinal cortex.

نویسنده

  • Michael E Hasselmo
چکیده

Data show a relationship of cellular resonance and network oscillations in the entorhinal cortex to the spatial periodicity of grid cells. This paper presents a model that simulates the resonance and rebound spiking properties of entorhinal neurons to generate spatial periodicity dependent upon phasic input from medial septum. The model shows that a difference in spatial periodicity can result from a difference in neuronal resonance frequency that replicates data from several experiments. The model also demonstrates a functional role for the phenomenon of theta cycle skipping in the medial entorhinal cortex.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Grid cell firing patterns may arise from feedback interaction between intrinsic rebound spiking and transverse traveling waves with multiple heading angles

This article presents a model using cellular resonance and rebound properties to model grid cells in medial entorhinal cortex. The model simulates the intrinsic resonance properties of single layer II stellate cells with different frequencies due to the hyperpolarization activated cation current (h current). The stellate cells generate rebound spikes after a delay interval that differs for neur...

متن کامل

Rebound spiking in layer II medial entorhinal cortex stellate cells: Possible mechanism of grid cell function.

Rebound spiking properties of medial entorhinal cortex (mEC) stellate cells induced by inhibition may underlie their functional properties in awake behaving rats, including the temporal phase separation of distinct grid cells and differences in grid cell firing properties. We investigated rebound spiking properties using whole cell patch recording in entorhinal slices, holding cells near spikin...

متن کامل

Synchronization of Strongly Coupled Excitatory Neurons : Relating Network Behavior

Behavior of a network of neurons is closely tied to the properties of the individual neurons. We study this relationship in models of layer II stellate cells (SCs) of the medial entorhinal cortex. SCs are thought to contribute to the mammalian theta rhythm (4-12 Hz), and are notable for the slow ionic conductances that constrain them to fire at rates within this frequency range. We apply " spik...

متن کامل

Rebound spiking properties of mouse medial entorhinal cortex neurons in vivo.

The medial entorhinal cortex is the gateway between the cortex and hippocampus, and plays a critical role in spatial coding as represented by grid cell activity. In the medial entorhinal cortex, inhibitory circuits are robust, and the presence of the h-current leads to rebound potentials and rebound spiking in in vitro experiments. It has been hypothesized that these properties, combined with n...

متن کامل

How reduction of theta rhythm by medial septum inactivation may covary with disruption of entorhinal grid cell responses due to reduced cholinergic transmission

Oscillations in the coordinated firing of brain neurons have been proposed to play important roles in perception, cognition, attention, learning, navigation, and sensory-motor control. The network theta rhythm has been associated with properties of spatial navigation, as has the firing of entorhinal grid cells and hippocampal place cells. Two recent studies reduced the theta rhythm by inactivat...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Philosophical transactions of the Royal Society of London. Series B, Biological sciences

دوره 369 1635  شماره 

صفحات  -

تاریخ انتشار 2014